If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2+8y-6=0
a = 3; b = 8; c = -6;
Δ = b2-4ac
Δ = 82-4·3·(-6)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{34}}{2*3}=\frac{-8-2\sqrt{34}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{34}}{2*3}=\frac{-8+2\sqrt{34}}{6} $
| 2x+11x+21+8=x+4x-51 | | -6(x+1)=3(x-2) | | -6x-6=3x-6 | | 8n–3n+24=59 | | 4(4-n)=4 | | 5x+18=-2x-38 | | 4(12+x)=80 | | (2x+7)=43 | | (8*5)+2(3)=4(x-8) | | (8*5)+2(3)=4(x-8)* | | 2/3n–7=-9 | | 165(x+2)=60 | | 12x+50=110* | | 153(2x-1)=45 | | -7+8x=-2x-27 | | 9y^2+12y-10=0 | | (5.3/2+1.5)^x=3.7 | | 4x-12.2x=-32 | | 142(x-2)=20 | | 6x-20=2x^2-12x+16 | | 6k-4=32 | | x/8.5=10 | | |6x|-5=13 | | 4x(7x+8)=5x(9x-20) | | 15x-11x-3x=2 | | 1217=4x-7 | | -4x+7=-3x+10 | | -79=7x+3(4x+1) | | 9y^2+24y-19=0 | | 1112+n=17 | | 5x+60+2x+51=43-2x+30-10x | | 2x+3*20=55 |